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The single-scattering properties of the Platonic shapes, namely, the tetrahedron, hexahedron, octahe-
dron, dodecahedron, and icosahedron, are investigated by use of the finite-difference time-domain
method. These Platonic shapes have different extents of asphericity in terms of the ratios of their
volumes (or surface areas) to those of their circumscribed spheres. We present the errors associated with
four types of spherical equivalence that are defined on the basis of (a) the particle’s geometric dimension
(b) equal surface area (A), (c¢) equal volume (V), and (d) equal-volume-to-surface-area ratio (V/A). Nu-
merical results show that the derivations of the scattering properties of a nonspherical particle from its
spherical counterpart depend on the definition of spherical equivalence. For instance, when the Platonic
and spherical particles have the same geometric dimension, the phase function for a dodecahedron is
more similar than that for an icosahedron to the spherical result even though an icosahedron has more
faces than a dodecahedron. However, when the nonspherical and spherical particles have the same
volume, the phase function of the icosahedral particle essentially converges to the phase function of the
sphere, whereas the result for the dodecahedron is quite different from its spherical counterpart. Fur-
thermore, the present scattering calculation shows that the approximation of a Platonic solid with a
sphere based on V/A leads to larger errors than the spherical equivalence based on either volume or

projected area.
OCIS codes:

1. Introduction

The scattering and absorption properties of non-
spherical particles are fundamentally important to a
number of science disciplines and many industrial
applications. The importance of this subject can be
recognized from the fact that substantial research
efforts from the electromagnetic and optical research
communities have been focused on developing vari-
ous accurate and approximate methods to tackle the
difficulty associated with the electromagnetic scatter-
ing by nonspherical particles. These methods were
recently reviewed by Wriedt,! Mishchenko et al.,?
Kahnert,? and Liou.# With these scattering compu-
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tational methods, the optical characteristics of vari-
ous nonspherical particles ranging from various
axisymmetric geometries to highly irregular and in-
homogeneous particle morphologies have been inves-
tigated. For example, Mugnai and Wiscombe,?>
Wiscombe and Mugnai,® Barber and Hill,” Mish-
chenko et al.,® and Schulz et al.? have investigated the
optical properties of axially rotational particles (e.g.,
Chebyshev particles, spheroids, and finite-length cir-
cular cylinders); Fuller,'© Mackowski,!! and Mack-
owski and Mishchenko!2 have investigated the
optical properties of spherical clusters; and many oth-
ers (e.g., Liou et al.,13 Videen et al.,* Sun et al.,® and
Wriedt6) have investigated the optical properties as-
sociated with numerous types of particle morphology.

For electromagnetic scattering by a dielectric par-
ticle, the particle shape, in addition to the particle
inherent dielectric characteristics (e.g., permittivity),
largely affects the scattering properties of the parti-
cle. According to Barett,” particle shape, a syn-
onym for particle geometric form in the literature, is
the expression of particle external morphology.
Specifically, particle shape can be qualitatively de-
scribed by use of three morphological features: over-
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Fig. 1. Geometries of five Platonic shapes that include the tetra-

hedron, cube, octahedron, dodecahedron, and icosahedron.

all shape, roundness (or smoothness) of corners or
edges, and surface texture. Additionally, the extent
of particle convexity may also be an important mor-
phological parameter. It has been shown that the
optical properties of particles with smooth and sharp-
edged surfaces (e.g., spheroids and finite circular cyl-
inders)!® are sensibly different. The extent of
asphericity on the overall shape of a nonspherical
particle is usually measured quantitatively in terms
of the ratio of the volume (or surface area) of the
particle to that of its circumscribed sphere.

Many nonspherical particles in nature have aspect
ratios (note that the aspect ratio of a particle is de-
fined as the ratio of its length to width) that are
approximately equal to unity. This category of non-
spherical particles, usually referred to as quasi-
spherical particles, is often used in various practical
applications involving the single-scattering proper-
ties of small particles. For example, they are impor-
tant for a correct representation of the effect of small
ice crystals on the radiative properties of ice clouds in
a parameterization scheme, as shown by McFar-
quhar et al.’® Note that the scattering properties of
the quasi-spherical particles can be quite different
from those of perfect spheres (e.g., Refs. 20 and 21).

The intent of the present study is to understand the
effect of the asphericity on the scattering character-
istics of the particles that possess sharp edges and

planar faces. Specifically, we investigate a family of
convex shapes known as Platonic solids consisting of
the tetrahedron, cube, octahedron, dodecahedron,
and icosahedron, all of which have different extents of
asphericity specified in terms of the ratios of the par-
ticle volumes to those of the spheres that may be
circumscribed around or inscribed within the parti-
cles. These Platonic particle shapes all have an as-
pect ratio of unity defined with respect to their
circumscribed spheres, and they approach a sphere in
an ordered manner. Thus the Platonic shapes are
quite ideal for studying the general features regard-
ing the asphericity effect on scattering properties.
In the present study the finite-difference time-
domain (FDTD) method pioneered by Yee2? is used to
calculate the single-scattering parameters of the Pla-
tonic particles. This paper is organized as follows.
The geometrical shapes of the Platonic solids are de-
scribed in Section 2. In Section 3 we briefly outline
the method used for the present light-scattering cal-
culation. The optical properties of the Platonic sol-
ids as compared with those of spheres are also
discussed in Section 3. Finally, the conclusions of
this study are given in Section 4.

2. Geometric Shapes of Platonic Solids

To study the effect of particle morphology on particle
optical properties, we consider several polyhedral ge-
ometries for light-scattering calculations. Specifi-
cally, we consider the well-known Platonic solids
(also known as regular polyhedrons), which usually
means five geometric shapes: the tetrahedron, cube
(or hexahedron), octahedron, dodecahedron, and
icosahedron.23-26  Figure 1 shows the geometries of
the five Platonic solids. The numbers of the faces for
the tetrahedron, cube, octahedron, dodecahedron,
and icosahedron are 4, 6, 8, 12, and 20, respectively.
The faces of a Platonic solid are equilateral polygons
with the same number of sides. Note that the num-
ber of faces, the number of vertices, and the number
of edges of a polyhedron satisfy the famous Euler’s
theorem.27

The five Platonic solids have quite different extents
of asphericity measured quantitatively in terms of
the ratios of either surface areas or volumes of these
nonspherical geometries to those of their circum-
scribed spheres. Table 1 lists the ratios of the edge
lengths (L) of the nonspherical Platonic solids to the
corresponding circumscribed spherical radii (R), the

Table 1. Relationships for the Geometric Parameters for Platonic Particles”

Number of
Type Faces L/R r/R A/(4mR?) V/(4wR3/3)
Tetrahedron 4 1.63 0.33 0.37 0.12
Cube 6 1.15 0.58 0.64 0.37
Octahedron 8 141 0.58 0.55 0.32
Dodecahedron 12 0.71 0.79 0.84 0.66
Icosahedron 20 1.05 0.79 0.76 0.61

“L is the edge length of a Platonic particle, R is the radius of the circumscribed sphere, r is the radius of the inscribed sphere, A is the

surface area, and V is the volume of a Platonic particle.
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ratios of the radii of the corresponding inscribed
spheres (r) to those of the circumscribed spheres, the
ratios of the surface areas (A) of the Platonic solids to
those of the circumscribed spheres, and the ratios of
the volumes (V) of the Platonic solids to those of the
circumscribed spheres. From the surface area ra-
tios or volume ratios listed in Table 1, it is evident
that the tetrahedral shape among the five Platonic
solids has the maximum asphericity, whereas the
dodecahedral shape has the minimum asphericity.

To understand the scattering characteristics of the
Platonic solids when compared with their spherical
counterparts, we consider four types of spherical
equivalence for the nonspherical particles. First, we
define the circumscribed sphere of a Platonic particle
as its spherical equivalence; i.e., the nonspherical
and spherical particles have the same geometric di-
mension. Second, we define an equivalent-surface
sphere whose radius is given by

R,=(A/4m)"?, (1)

where A is the surface area of a Platonic particle.
Additionally, we also define the volume-equivalent
sphere whose radius is given by

R, = (3V/4m)'?, (2)

where V is the volume of a Platonic particle. Fol-
lowing Foot,28 Francis et al.,2° Mitchell and Arnott,3°
Wyser and Yang,3! Fu et al.,32 and Grenfell and War-
ren,33 we also define the effective spherical radius for
a nonspherical particle as follows:

R = 3V (3a)
of = 4 A, ) a
where A, is the averaged particle projected area.

For an arbitrary convex particle, it has been proven34
that A, equals A/4 under random orientations.
Thus, t%e effective radius defined in Eq. (3a) is the
same as the following definition:

Reff = 3V/A (3b)

Note that the ratio of the volume to the projected area
is proportional to the mean length of the particles in
the anomalous diffraction theory originally developed
by van de Hulst.35 Because the anomalous diffrac-
tion theory can give some physical insight into pro-
cesses associated with light scattering by a large
dielectric particle when the refractive index is small,
the spherical equivalence defined in terms of the ef-
fective radius in Eq. (3b) is expected to be more suit-
able than the volume- or surface-area-based
equivalence. For this reason, the spherical equiva-
lence based on Eq. (3a) has been advocated (e.g., Fu et
al.32). Table 2 lists the ratios of the radii of circum-
scribed spheres to the equivalent radii defined in Eqgs.
(1)—(3) for the five Platonic shapes. Evidently,
among the three definitions based on Egs. (1)—(3a) for
spherical equivalence, the surface-area-based-
equivalent spherical radius (R,) is the largest,
whereas the effective radius (R, is the smallest.

Table 2. Ratios of R to R, R,, and R "

Type R/R, R/R, R/R g
Tetrahedron 1.65 2.01 3.00
Cube 1.25 1.40 1.73
Octahedron 1.35 1.46 1.73
Dodecahedron 1.09 1.15 1.26
Icosahedron 1.15 1.18 1.26

“R is the radius of the circumscribed sphere; R, is the radius of
the equivalent-surface-area sphere; R, is the radius of the
equivalent-volume sphere; and R,y = 3V/A in which V is the
volume and A is the surface area of a given polyhedron.

The minimum of R/R, (and also R/R,) ratio values,
which implies the maximum extent of sphericity for
the nonspherical particles, is observed for the dodeca-
hedral geometry. However, the dodecahedron and
icosahedron have the same extent of asphericity if
specified in terms of R/R ¢ (note that R/R ¢ is 1.26
for both geometries). The same feature is also noted
for the cube and octahedron, i.e., R/R ¢ = 1.73 for the
two shapes. Thus the spherical equivalence based
on V/A has a disadvantage in the sense that the
extent of asphericity cannot be uniquely specified in
some cases.

3. Scattering Properties of Platonic Particles

A number of methods have been developed for calcu-
lating the scattering properties of nonspherical par-
ticles, among which the T-matrix method,6:36:37 the
discrete dipole approximation,3839 and the FDTD38.39
method4°-43 are the most widely used. In this study
we use the FDTD method to compute the single-
scattering properties of the Platonic particles. The
FDTD method is flexible in dealing with an arbitrary
nonspherical particle morphology in the sense that
the representation of a scatterer in this method is
straightforward, by assignment of proper permittivi-
ties over grid points. The basic principle of this
method is to compute the near field via a finite-
difference analog of two time-dependent Maxwell’s
curl equations given by

e 0E
VXH=-—, (4a)
c ot
w oH
VXE= —— —, (4b)
c ot

where E and H are electric and magnetic fields,
respectively, and € and p are permittivity and per-
meability, respectively. To implement the finite-
difference computation, we use the perfectly matched
layer boundary condition developed by Berenger++ to
truncate the spatial domain. The near field ob-
tained in the time domain, which is directly computed
from a finite-difference form of the time-dependent
Maxwell equations, can be transformed into its far-
field counterpart via the Fourier transform. Fur-
thermore, the near field can be transformed into the
far field via an exact electrodynamic relationship.
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Fig. 2. Phase function, degree of linear polarization (—P;5/P;,),
and Py,/P1; for the Platonic shapes and the corresponding circum-
scribed spheres (i.e., the spheres and the Platonic shapes have the
same geometric dimension) at a wavelength of 0.6328 pm. The
particles are assumed to be ice with a refractive index of m =
1.3085 + 1.09 X 10~ 8.
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The details of the FDTD technique for an application
to the light-scattering computation can be found in
the literature (e.g., Refs. 40-43). The scattering
phase matrix of a nonspherical particle depends on
the orientation of the particle relative to the incident
beam direction, the scattering angle, and the azi-
muthal angle of the scattering plane on which the
scattered field is observed. For simplicity, we as-
sume the Platonic particles are randomly orientated
in space. Under this condition, the phase matrix is
independent of the azimuthal angle of the scattering
plane. In this study we define the phase matrix fol-
lowing Bohren and Huffman.45

Figure 2 shows the phase function P, the degree
of linear polarization that is given by —P,,/P;;, and
the ratio of Py, /P, for the five Platonic shapes, which
are compared with the results for the circumscribed
spheres. The size parameter x = 10 in Fig. 2 is
defined with respect to the radius of the circum-
scribed sphere, that is, 2nR/N = 10. The wave-
length used in the scattering calculation is 0.6328
pm, and the refractive index is assumed to be that of
ice at this wavelength, given by m = 1.3085 + i1.09 X
108 from the data compiled by Warren.46 For the
phase function, the spherical result displays pro-
nounced oscillations, particularly, for scattering an-
gles ranging from 120° to 180°. The phase function
for the tetrahedral shape is quite featureless and
essentially flat near backscattering directions. Un-
like the phase function for the tetrahedron, the phase
functions for the other four types of the Platonic
shape also show some oscillations. The phase func-
tions for the hexahedron and octahedron are quite
similar, although the result for the former is closer to
that of the sphere around the 60° scattering angle.
The phase function for the dodecahedron is similar to
that of the sphere because the dodecahedron among
the five shapes has the maximum sphericity. The
results for —P,,/P;; also show that the results for
nonspherical particles approach their spherical coun-
terparts when the sphericity of the Plantonic parti-
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Fig. 3. Same as Fig. 2 except for Py3/P;4,

cles increases in the order of the tetrahedron,
hexahedron, octahedron, icosahedron, and dodecahe-
dron. The quantity Poy/P;; is indicative of the as-
phericity of a particle4547 because this parameter is
unity for a sphere. Evidently, the results for the five
Platonic shapes indicate the nonspherical effect. It
is noteworthy that the values of P,,/P;; for the do-
decahedron and icosahedron are of the same order,
although the phase function and —P;,/P;; for the
former are much closer to their spherical counter-
parts. The quantity (1 — Poy/P;;) is sometimes
called the depolarization ratio.#* From the compar-
ison between the nonspherical and the spherical re-
sults shown in Fig. 2, it is evident that the
depolarization ratio is more sensitive than the degree
of linear polarization to the particle nonsphericity.
Especially, the values of P,,/P;; at large scattering
angles are quite sensible to particle nonsphericity.
Furthermore, the extent of asphericity for the five
Platonic particles can be ranked in the order of the
tetrahedron, octahedron, hexahedron, icosahedron,
and dodecahedron. This is consistent with the as-
phericity rank illustrated by the numbers listed in
Table 1. To illustrate this point even further, we
show the other elements of the phase matrix in Fig. 3,
namely, Ps3/P;, —P43/Pq1, and Py, /P;;. We see
here that, even for the dodecahedron whose phase
function agrees well with that of the sphere, there are
large differences when these other elements are com-
pared. It should be noted that these phase-matrix
elements are sensitive to the phase of the fields and
not just their moduli.

Figure 4 shows the phase function of an ice sphere
with a size parameter of x = 5 at a wavelength of
0.6328 wm. Also shown in Fig. 4 are the phase func-
tions of the five Platonic shapes with the same radius,
projected area, volume, and V/A (the first, second,
third, and fourth columns, respectively, in Fig. 4) as
those for the sphere. Because the orientation-
averaged projected area of a convex shape is one
fourth of the particle surface area under the random
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Fig. 4. Phase function of an ice sphere with a size parameter of
x = 5. The wavelength and refractive index are the same as those
in Fig. 2. Also shown are the phase functions of the five Platonic
shapes with the same radius (the first column), projected area (the
second column), volume (the third column), and V/A (the fourth
column) as those for the sphere.

orientation condition, the projected-area-based
equivalence is the same as the surface-area-based
equivalence. The four types of mnonspherical—
spherical equivalence in Fig. 4 are hereafter referred
to as R-based equivalence, A-based equivalence,
V-based equivalence, and V/A-based equivalence (the
first, second, third, and fourth columns, respectively,
in Fig. 4). The results shown in the first column of
Fig. 4 indicate that the forward-scattering peaks for
the tetrahedron, hexahedron, and octahedron are
substantially lower than those for the sphere. Be-
cause the forward-scattered peak is due primarily to
diffraction, we should expect the largest deviation to
occur for those particles whose projected area devi-
ates the greatest amount from their spherical coun-
terparts. This is especially noticeable in the case of
the tetrahedron because a tetrahedron has a much
smaller projected area than its circumscribed sphere
does. When the dimensions of the nonspherical par-
ticles and the sphere are the same, the phase function
for the dodecahedron is quite similar to that for the
sphere. This is because the dodecahedron, among
the five Platonic shapes, has the minimum deviation
from asphericity. The phase functions for the other
four Platonic shapes are quite different from those
associated with their circumscribed spheres. The
second and third columns in Fig. 4 correspond to the
cases for the surface-area-based and volume-based
equivalences, respectively. When the surface area
or volume of the nonspherical particles are defined to
be the same as that of the sphere, the forward-

scattering peaks of the phase functions for the Pla-
tonic shapes are quite similar to their spherical
counterparts. An interesting feature to note is that
the icosahedron has the minimum extent of asphe-
ricity for the light-scattering computation if the non-
spherical and spherical particles have the same
volume or surface area. The phase function for the
icosahedron essentially converges to the spherical re-
sult when the volumes for the two geometric shapes
are equal. This feature well illustrates the impor-
tance of how a spherical equivalence is defined. The
fourth column in Fig. 4 is the case in which the Pla-
tonic particles and the sphere have the same V/A.
Evidently, the spherical equivalence based on the
V/A is less accurate than either the surface-area-
based or the volume-based spherical equivalence.
Although the V/A-based spherical approximation has
been advocated in practice, Fig. 4 shows that the
volume-based spherical equivalence is the most suit-
able in the case of small size parameters. It should
be pointed out that the present V/A-based spherical
equivalence is different from that suggested by Gren-
fell and Warren.33 By use of Eq. (3a) or (3b), in this
study a nonspherical particle is approximated by a
single sphere. In contrast, in Grenfell and Warren’s
approach, a population of polydisperse nonspherical
particles is involved, and an individual nonspherical
particle is replaced by a number of spheres. The
spherical equivalence suggested by Grenfell and
Warren33 provides an effective alternative to deal
with particle asphericity in the light-scattering com-
putation as applied to atmospheric radiative transfer
simulation, particularly, flux computation.

Figure 5 is the same as Fig. 4, except for a wave-
length of 11 pm. The refractive index of ice at this
wavelength is 1.0925 + i0.248. It should be noted
that ice is strongly absorptive at this wavelength be-
cause the imaginary part of the refractive index is
quite large. Additionally, the 11-pm wavelength for
ice is within the Christiansen band“#4° in which the
extinction of an ice particle is minimum because the
real part of the refractive index is close to 1. The
overall features shown in Fig. 5 are similar to those in
Fig. 4; namely, the dodecahedral particle has the
minimum extent of asphericity if the Platonic parti-
cles and the sphere have the same dimension,
whereas the minimum nonspherical effect is noted
for the icosahedron if the volume or surface area is
conserved. In the case involving strong absorption,
an interesting point to note is that the radius-based
spherical equivalence overestimates the forward-
scattering peak of the phase function, whereas the
scattering peak in the forward direction is underes-
timated in the spherical equivalence based on V/A, as
is evident from results shown in the first and fourth
columns in Fig. 5.

In that many aerosols have a higher refractive in-
dex (both real and imaginary parts) than ice at a
visible wavelength, we performed a calculation sim-
ilar to the results presented in Fig. 4 except the re-
fractive index was taken as m = 1.53 + i8 X 103 (see
Mishchenko et al.5°) for a wavelength of 0.55 pm; the
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Fig. 5. Same as Fig. 4 except for a wavelength of 11 pm. The
refractive index of ice at this wavelength is 1.0925 + i0.248.

size parameter was kept the same, namely, x = 5.
The results are shown in Fig. 6, and, if one compares
these results with those for ice shown in Fig. 4, one
can see that they are in complete qualitative agree-
ment with them.
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Fig. 6. Same as Fig. 4 except the particles are assumed to be
aerosols with a refractive index m = 1.53 + i8 X 1073 for a
wavelength of 0.55 wm; the size parameter was kept the same,
namely, x = 5.
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Table 3 lists the extinction efficiencies and single-
scattering albedos associated with the phase func-
tions shown in Figs. 4 and 5. Evidently, the
extinction efficiencies (i.e., the ratio of the extinction
cross section to the particle projected area) and
single-scattering albedos for spheres and the Platonic
shapes are different, depending on a specific spheri-
cal equivalence. In Figs. 4 and 5 it is shown that the
dodecahedron and the spheres have similar phase
functions if the dimensions of these two types of par-
ticle are the same. However, according to the num-
bers listed in Table 3, the relative differences of the
extinction efficiencies of the dodecahedral and spher-
ical particles are 12.5% and 14.8% at 0.6328- and
11-pm wavelengths, respectively. Note that the
projected areas of the Platonic solids are smaller than
those of their circumscribed spheres. If the differ-
ences of the projected areas are accounted for, the
difference of the extinction cross sections of a Platonic
and a sphere is given by

[Qext, PlatonicA/(4TrR2) - Qext,sphere]

Qext,sphere

5)

Difference =

where Q¢ platonic aNd Qext sphere are the extinction
efficiencies for the Platonic solids and spheres, re-
spectively. From Eq. (5) and the area ratio given in
Table 1, the preceding two relative errors (12.5% and
14.8%) reduce to —5.8% and —3.9% for the differences
between the extinction cross sections of the dodeca-
hedrons and the corresponding circumscribed
spheres. Similarly, in the case for the icosahedrons
that have the same volumes as spheres, the relative
differences for the extinction efficiencies are —8.2%
and —6.6% for the cases listed in Table 3 for 0.6328-
and 11-pm wavelengths, respectively. However, the
corresponding relative differences for the extinction
cross sections are —5.2% and —3.6%. Therefore it
can be misleading to compare the extinction (or scat-
tering) efficiencies instead of the extinction (or scat-
tering) cross sections for nonspherical and spherical
particles. An important point to note is that what is
used in radiative transfer calculations is the extinc-
tion and scattering cross sections rather than effi-
ciencies.

4. Conclusions

To understand the asphericity effect of nonspherical
particles on their optical properties, we have com-
puted the single-scattering parameters including the
phase matrix, extinction efficiency, and single-
scattering albedo for the well-known Platonic geom-
etries for cases involving both negligible and strong
absorptions. The size parameters involved in this
study are in the resonant region that excludes the
applicability of the commonly used geometric-optics
method. Thus we use the FDTD method for the
present light-scattering computations. The optical
properties of these nonspherical particles are com-
pared with four types of spherical counterpart that
are based on equivalent geometric dimension, volume
(V), surface area (A), and V/A. Numerical results



Table 3. Extinction Efficiencies and Single-Scattering Albedos Associated with the Phase Functions Shown in Figs. 4 and 5

\ = 0.6328 pm A =11 pum
Extinction Single-Scattering Extinction Single-Scattering
Shape Equivalence Efficiency Albedo Efficiency Albedo
Sphere 3.36 x 10° 1.00 x 10° 1.82 x 10° 3.78 X 1071
Tetrahedron R-based equivalence 5.73 X 107! 1.00 x 10° 8.74 X 107! 2.36 X 107t
A-based equivalence 1.59 x 10° 1.00 x 10° 1.21 x 10° 3.02 x 107t
V-based equivalence 2.04 X 10° 1.00 x 10° 1.28 x 10° 3.53 x 107t
V/A-based equivalence 2.35 X 10° 1.00 x 10° 1.47 x 10° 4.00 X 107t
Hexahedron R-based equivalence 1.62 x 10° 1.00 x 10° 1.29 x 10° 3.12x 107t
A-based equivalence 2.29 x 10° 1.00 x 10° 1.41 x 10° 3.63 x 107!
V-based equivalence 2.54 X 10° 1.00 x 10° 1.51 x 10° 3.63 X 10t
V/A-based equivalence 2.98 x 10° 1.00 x 10° 1.59 x 10° 4.08 x 1071t
Octahedron R-based equivalence 1.56 x 10° 1.00 x 10° 1.31 x 10° 3.02 X 107t
A-based equivalence 2.44 X 10° 1.00 x 10° 1.49 x 10° 3.57 X107t
V-based equivalence 2.68 x 10° 1.00 x 10° 1.54 x 10° 3.71 x 107t
V/A-based equivalence 3.02 x 10° 1.00 x 10° 1.62 x 10° 3.96 X 107!
Dodecahedron R-based equivalence 3.78 X 10° 1.00 x 10° 2.09 X 10° 3.77 X107t
A-based equivalence 4.03 x 10° 1.00 x 10° 2.16 X 10° 391 x 107t
V-based equivalence 4.22 X 10° 1.00 x 10° 2.18 x 10° 3.98 x 107t
V/A-based equivalence 4.35 X 10° 1.00 x 10° 2.23 X 10° 412 x 1071t
Icosahedron R-based equivalence 2.54 X 10° 1.00 x 10° 1.61 x 10° 348 x 1071t
A-based equivalence 3.00 x 10° 1.00 x 10° 1.71 x 10° 3.70 X 1071
V-based equivalence 3.09 x 10° 1.00 x 10° 1.70 x 10° 3.81x 101t
V/A-based equivalence 3.25 X 10° 1.00 x 10° 1.73 x 10° 3.94x10°1

show that all the spherical approximations lead to
pronounced errors (particularly, at a visible wave-
length) for the first three Platonic geometries (i.e.,
tetrahedron, hexahedron, and octahedron) due to the
substantial extent of asphericity in these cases.
Among the four spherical approximations, the spher-
ical equivalence based on volume corresponds to min-
imum errors. The comparison of phase functions for
the spherical and nonspherical particles is quite in-
teresting in the cases of the dodecahedron and icosa-
hedron. Although an icosahedron has more faces
than a dodecahedron, the extent of asphericity for the
former is more substantial than the case of the latter
if the spherical equivalence is specified with respect
to particle linear dimension (or diameter). In con-
trast, the reverse situation is true if the spherical
equivalence is defined according to the volume of the
Platonic particles. In other words, the extent of as-
phericity for a particle really depends on the defini-
tion of a specific spherical equivalence. The
spherical approximation based on V/A (or projected
area) does not lead to minimum errors, as compared
with the other three types of spherical equivalence.
Additionally, the spherical equivalence based on V/A
cannot uniquely specify the extent of asphericity be-
cause this ratio is the same, both for a dodecahedron
and an icosahedron if they have the same circum-
scribed diameter. In this study the spherical equiv-
alence based on V/A is the approximation of a
nonspherical particle with a single sphere. This
V/A-based spherical approximation is different from
that suggested by Grenfell and Warren who replaced
a nonspherical particle by using a number of spheres
in computing the optical properties of a population of
polydisperse nonspherical particles. Grenfell and

Warren’s approach is a quite effective alternative in
computing the bulk optical properties of a polydis-
perse system of nonspherical particles, as applied to
the simulation of radiative transfer (flux computa-
tion, in particular) in the atmosphere. Further-
more, in this study we also show that it can be quite
misleading to compare the extinction (or absorption)
efficiencies rather than cross sections for a nonspheri-
cal particle and a spherical particle because they may
have different cross sections projected on a plane nor-
mal to the incident direction. The present study is
limited to small size parameters. It will be interest-
ing to investigate these features associated with par-
ticle asphericity for size parameters in the regime of
geometric optics.
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